
1

Syntagma Vn 1.2 - Program notes

Summary
Syntagma is a program written in C# to take a corpus of text and
discover word classes and structures of classes. This document
describes the internal workings of the program.

Installation
The running program is available in a zip package on my
website, colinday.co.uk/downloads. Download the file into a
folder of your choosing and double click on it for the separate
files to be unzipped. Run the program by double-clicking on
Syntagma.exe.

The program source files are also contained in a zip package
on the same website. When unzipped, they form a project to be
run under Microsoft’s Visual Studio.

Terminology
A distinction is to be made between word tokens (individual
words appearing in the corpus) and a word type (the collection of
word tokens with the same form). Here word is used, usually
meaning word type, but hopefully the context makes it clear
which is intended.

A class is a collection of word types which are linked by
occurring in the same or similar environments. A structure is a
pair of classes or structures which occur in sequence with
adequate frequency.

A component is a word, a class or a structure. A composite is
a class or a structure.

Overall design
The program is plentifully equipped with parameters which the
user can alter at any time. It is also possible for the user to
change the amount of information which the program puts in a
log file. In these ways, it is hoped that the program will be a
suitable experimental tool.

After initialisation, the program works in two phases. Phase 1
seeks to find initial classes on the basis of statistical collocation
between words. Phase 2 looks for further classes and structures
of classes on the basis of collocation with the classes and
structures found so far. Phase 1 may only be run once. Phase 2
may be run any number of times.

Data structures
Each component is mapped into a unique integer, so the program
is always handling integers and not strings. These integers are the
indices within a list wdCl of Item. Zero is not used to identify a
component, and 1 is used for a full stop.

An Item is a C# object, with the following structure:
! itName string, the name of the component;
! itCount integer, the number of occurrences in the corpus;
! itMembers List<int>, the members of this class;
! itClass List<int>, the classes for which this is a member;
! itPre Dictionary<int,int> the components found preceding this,
with the frequencies of co-occurrence;
! preSig List<int> the components found significantly preceding
this component;
! itPost Dictionary<int,int> the components found following
this, with the frequencies of co-occurrence;
! postSig List<int> the components found significantly
following this component.

Contexts are pairs of particular classes between which

components may be listed. These are stored in conText:
Dictionary <long, Dictionary<int,int>>
Here the long variable is used to pack together the integers
representing the two classes, and the dictionary stores the
components found within this context, with the frequencies with
which they are found in this context.

Input text
The input file is to be an ASCII text file. For the purposes of
development the corpus used has been the book Frontier Ways
(1959) by Edward Everett Dale, University of Texas Press. The
University of Texas Press have kindly given me permission to
distribute this text along with my program.

The way that the corpus is handled depends on the initial
parameters.

Initial parameters
The default settings may be changed by clicking on Set initial
parameters.

The input file may be specified, and the file to be used for
logging information. The text will by default be capitalised, but
this may be blocked.

The only punctuation which the program needs is the end of
sentence. All end-of-sentence characters are treated alike.
Punctuation at the start or end of words will be ignored. Lists of
these types of punctuation may be defined.

Display information
Some information is displayed on the screen by means of
message boxes. The level of this information may be changed
before a phase is run.
! Level 1 (default) Information is given at end of every phase.
! Level 2 Extra information is displayed from time to time.

Logging levels
Information is written to the logging file. The amount of
information may be changed before a phase is run.
! Level 0. No information is written. At the end of the phase, the
level reverts to 1.
! Level 1 (default). Basic information is written.
! Level 2. Extra details on the program working.
! Level 3. More detailed information.
! Level 4. Extremely detailed information.

Running parameters
A number of parameters may be changed to alter the way the
program is run. These are essentially thresholds which govern
whether certain actions are taken or not. The defaults have been
chosen to match the input text used during development. These
parameters may be changed before any phase is run. Specific
details are given below as the working of the program is
explained.

All the parameters may be read from the file Parameters.txt.
This my only be done once, before Phase 1 is run.

Documentation and help
This gives some description of the way the program runs and
what the user needs to supply. It is generated from an ASCII file
Documentation.txt, and is displayed by means of a specially
written C# method which runs within Form 3.

2

Phase 1

Phase 1 may only be run once. Initial parameters are activated.
The purpose of Phase 1 is to find ‘seed classes’, usually
involving those few words which occur very frequently. These
classes can then be used to make a way into discovering other
classes in view of collocations with the seed classes.

Reading the corpus (Method readCorpus)
The input file is read line by line. Ends of lines are treated as
spaces. Words are transformed into unique integers by means of
a temporary dictionary, and an item created for each word type.
The dictionary is not needed after the text has been read, as the
string form of each word is stored in the corresponding Item.

The words are assembled into sentences, each sentence
beginning and ending with a full stop (Item number 1). This
means that each word has a preceding and a following neighbour.

Collocations (Method countCollocations)
The collocations (co-occurrences) of words are counted. This
involves processing all the sentences, and recording for each
word in the itPre and itPost parts of its Item the words found
immediately before and after it, with the number of such
occurrences. The number of times each word occurs is also
counted, and stored in itCount within Item.

Significant collocations (Method findSignificances)
Each word is compared with every other word to see whether the
collocations between them are significant.

Let the total number of word in the corpus be C and the
number of occurrences of word A be Na and that of word B be
Nb. Then the probability of finding word A at a particular
location in the corpus is Na/C. Similarly the probability of finding
word B at a particular location is Nb/C. The probability of finding
A followed by B at a particular location is (Na/C) * (Nb/C).
However, there are C locations at which this might happen. So
we may say that the most likely number of times we may find
this collocation is Na*Nb/C. Let us call this value M.

The distribution of words in the corpus is considered to exhibit
the Poisson distribution. For such a distribution, the expected or
mean value (M here) is the same as the variance, which is the
square of the standard deviation. So if we want to know how
many standard deviations x is from the mean, this is given by
(x - M) / sqrt(M).

A test is made on all the itPre and itPost lists of all words
(method itemSignifs). Taking the itPre lists, if two words have
the same word in the lists at least Parameter 2 times, and if there
are at least Parameter 1 standard deviations of significance for
these collocations, then the word is added to the appropriate
preSig list. The corresponding action is carried our on the itPost
lists also.

Class creation (Method classifyWords)
For each word, the following tests are carried out. First the word
is compared with all classes found to date, and if a sufficient
pairing is found, the word is added to the class. Then the word is
compared with all other words, and if a sufficient pairing is
found, two words are joined together into a new class.

Sufficient pairing is considered if both the pre and post lists are
sufficiently paired. For this to be the case for the pre lists, at least
Parameter 3 words should be in common to both the preSig lists
of the two components (method testPair).

When a new class is created, the itPre and itPost lists of the

two words are merged into the corresponding lists for the class.
The itCount of the class is the sum of the two counts for the
words. The significant collocations for the class are computed.
Finally a test is made to see whether the new class is sufficiently
paired to any already existing class, and if it is, the new class is
combined with the previous one.

Class names
Normally, the program will use names such as ‘Class1', ‘Class2'
and so on whenever a new class is created. However, in order to
ease the task of assessing whether the classes are reasonable, the
program allows the user to append a file Classnames.txt with the
class names to be used. After the program is run once, the names
which are desired can then be chosen. Each name occupies one
line in the file. This file is not needed for the program to run
successfully. If the file contains more lines than there are classes,
the rest are ignored. If the file has too few lines for the classes,
the program reverts to its normal naming for the remaining
classes.

This file is read whenever a new class is created.

Phase 2

Phase 2 may be run repeatedly. Each time before it is invoked the
running parameters and levels of information may be changed.
Each time Phase 2 is run, just one extra class may be formed,
though this may be subsumed within existing classes.

Parsing the text (Method parseText)
The counts for all composites are set to zero, as the frequencies
will be found as the parsing takes place.

Each sentence is copied, and then members of classes are
replaced by those classes. If a word or structure is a member of
more than one class, it is not replaced, in view of the ambiguity
as to which class is represented. Structures are recognised if
adjacent classes are found which are stored in the dictionary of
structures structIndex.

Now the sentence is scanned to find contexts, i.e. situations
where components are bracketed between two composites. The
pair of composites is known as a context. Information is stored
in a dictionary conText, defined as <long, Dictionary<int,int>>.
The pair of composites is stored in the long, and the value
dictionary is used to store the component occurring within this
context with its frequency of occurrence.

The sentence is then scanned to find occurrences of classes
adjacent to each other. Such pairs are stored as incipient
structures in the dictionary structWait.

Storing structures (Method findStructs)
The incipient structures deposited in structWait during the
parsing of sentences are now examined. If the two composites
spend at least Parameter 7 percent of their existence as part of the
structure, that structure is now given its own Item and its details
stored in structIndex. At the end, the dictionary structWait may
now be emptied.

One class in a context (Method gleanContexts)
If a context brackets only one class, then it may be considered
that all other items in that context belong as members of that
class. The criteria are that the class spends at least Parameter 5
per cent of its existence within that context, that words to be
added to the class spend at least Parameter 6 per cent of their
existence within that context, and that words exhibit sufficient

3

pairing with the class (method testPair as described under Class
creation for Phase 1 above).

Major context (Method selectContext)
A search is conducted to find the context which occurs with the
greatest number of components bracketed within it. This context
is then taken as a matrix for building another class.

Building another class (Method assimilateClass)
An attempt is now made to build a further class out of the
components which occur within the most frequently occurring
context.

A new class is started with a new Item. All of the components
which occur in the context (apart from classes) are added to the
new class, provided that they spend Parameter 8 per cent of their
lives within this context.

The significant collocations of all members of this new class
are recorded (method itemSignifs).

Testing the class (Method checkClass)
A test is carried out to see whether this last class to be built will
merge with a previously existing class. This involves comparing
the overlap of preSig and postSig lists between the two classes.
If the overlap is less than Parameter 4 per cent of the frequencies
of either classes, then merging is aborted.

Uniting classes (Method uniteClass)
This is only ever needed when the last class to be built, whose
Item is the last in the list (class A, say), is to be united with a
previously existing class (class B, say). This involves transferring
members of Class A to be members of class B, merging the lists
of collocations and significant collocations and adding together
the frequencies of occurrence.

The problem now exists, what should happen to the Item which
was assigned to Class A? Deleting it would involve too many
problems, so the solution which has been chosen is to render it
invalid (method nullClass). This removes all members from the
class, sets its frequency of occurrence to zero and sets its name
(itName) to “.Null”.

Postscript

Syntagma is intended as an experimental vehicle. It has not been
tested on other (non-inflected) languages, or on different volumes
of text. Even with the supplied input text, things start to go
wrong when Phase 2 has been run four or more times. Some
improve- ment might be found if the running parameters were
varied.

The elapsed times for running the phases cannot be accurate.
The time taken depends on what other activities the computer
was engaged in at the same time. Therefore, the times can only
be taken as maxima. Even so, the program can read in 80,000
words of text and classify a quarter of its words in no more than
half a second in total.

Colin Day
12th August 2018

